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The complexity of nuclear multifragmentation under-
went a remarkable simpli�cation when it was empirically

observed that many aspects of this process were: a) \re-
ducible"; and b) \thermally scalable" [1{4].
\Reducibility" means that a given many-fragment

probability can be expressed in terms of a corresponding
one-fragment probability, i.e., the fragments are emitted
essentially independent of one another.
\Thermal scaling" means that the one-fragment prob-

ability so extracted has a thermal-like dependence, i.e.,
it is essentially a Boltzmann factor.
Both \reducibility" and \thermal scaling" were ob-

served in terms of a global variable, the transverse en-
ergy Et, which was assumed to be proportional to the
excitation energy of the decaying source(s) [1].
In particular, it was found that the Z-integrated mul-

tiplicity distributions P (n) were binomially distributed,
and thus \reducible" to a one-fragment probability p.
With higher resolution, it was noticed that for each in-
dividual fragment species of a given Z, the nZ -fragment
multiplicities P (nZ) obeyed a nearly Poisson distribu-
tion, and were thus \reducible" to a single-fragment
probability proportional to the mean value hnZi for each
Z [2].

Empirically, \reducibility" and \thermal scaling" are
pervasive features of nuclear multifragmentation. \Re-
ducibility" proves nearly stochastic emission. \Thermal
scaling" gives an indication of thermalization.
Recently, there have been some questions on the signi�-

cance (not the factuality) of \reducibility" and \thermal
scaling" in the binomial decomposition of Z-integrated
multiplicities [5]. For instance, had the original distribu-
tion in the true excitation-energy variable been binomi-
ally distributed and thermally scalable, wouldn't the pro-
cess of transforming from excitation energy E to trans-
verse energy Et through an (assumedly) broad transfor-
mation function P (E;Et) destroy both features?
Speci�cally, under a special choice of averaging func-

tion (Gaussian), for a special choice of parameters (vari-
ance from GEMINI [6]), and for special input p (the ex-
citation energy dependent one-fragment emission proba-
bility) and m (the number of \throws" or attempts) to
the binomial function, the binomial parameters extracted
from the averaged binomial distribution are catastroph-
ically altered, and the initial thermal scaling is spoiled
[5].
It should be pointed out that while the decomposition

of the many-fragment emission probabilities P (n) into p
and m may be sensitive to the averaging process, the
quantity hmpi is not [5]. However, both p and hmpi are

FIG. 1. The inverse of the single fragment emission prob-
ability (solid circles) and the inverse of the average fragment
multiplicity (open circles) as a function of 1=

p
Et for the re-

action Ar+Au at E=A=110 MeV. The solid lines are linear
�ts to the data.

known to give linear Arrhenius plots with essentially the
same slope (see Fig. 1). This by itself demonstrates that
no damaging average is occurring.
Furthermore, we have observed that by restricting

the de�nition of \fragment" to a single Z, the multi-
plicity distributions become nearly Poissonian and thus
are characterized by the average multiplicity hmpi which
gives well behaved Arrhenius plots [2]. Thus, the linearity
of the Arrhenius plots of both p and hmpi extracted from

all fragments, and the linearity of the Arrhenius plots

of hmpi for each individual Z value eliminate observa-

tionally the criticisms described above. In fact, it follows

that no visible damage is inicted by the true physical

transformation from E to Et. Therefore, the experimen-

tal Poisson \reducibility" of multiplicity distributions for

each individual Z and the associated \thermal scaling" of

the means eliminates observationally these criticisms.
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